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SUMMARY

We derive a new representation for the exact convergence factor of classical two-level and two-grid
preconditioners. Based on this result, we establish necessary and sufficient conditions for constructing
the components of efficient algebraic multigrid (AMG) methods. The relation of the sharp estimate
to the classical two-level hierarchical basis methods is discussed as well. Lastly, as an application, we
give an optimal two-grid convergence proof of a purely algebraic “window”-AMG method. Copyright
c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

The primary objective of this paper is the presentation of a new sharp convergence theory for
both two-level hierarchical basis (TL) methods and two-grid (TG) methods. Our focus is on
the possible impact of the new theory in algebraic multigrid (AMG) methods.

The main result we prove is Theorem 4.1, which we then tailor to the respective cases of
TL and TG methods in Theorems 4.2 and 4.3. For TL methods, Theorem 4.2 deals also with
inexact coarse matrices. It generalizes a main two-level convergence theorem in [2]. Also, it
leads to a well–known classical convergence estimate in terms of cos2 of the abstract angle
between the two hierarchical component spaces. For TG methods, of particular interest is the
relationship of the sharp result in Theorem 4.3 with the (non-sharp) theory recently developed
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2 FALGOUT, VASSILEVSKI AND ZIKATANOV

in [12]. The latter theory introduces a weak approximation property that accounts for general
smoothing and coarsening processes. It also motivates the use of so-called compatible relaxation
[7] as a technique for efficiently measuring the quality of a coarse grid, and hence, as a tool for
selecting coarse grids in AMG methods. An important component of the theory is the use of
a restriction-like operator R that defines the coarse-grid variables. Curiously, the expression
in (4.9) of Theorem 4.3 is exactly the same as the expression used in [12], but for a specific
R. Since the construction of compatible relaxation is based on R, one possible outcome of the
relationship between these theories is the development of new, more predictive, compatible
relaxation methods. In general, it is hoped that the theory presented here will serve as a guide
for many future algorithm developments.

The remainder of the paper is structured as follows. In Section 2, we provide some basic
definitions, inequalities, and results needed throughout the paper. In Section 3, we prove an
important auxiliary result, the so-called “saddle-point lemma”, and then in Section 4, we use
this lemma to prove the main (sharp) two-grid convergence result. Next, in Section 5, we
relate the sharp two-grid convergence result with existing tools commonly used to prove two-
grid convergence in AMG theory. Many facts in Section 5 are simply reformulation of results
already established in a previous paper [12], but here we are able to establish some additional
necessary conditions. Finally, in Section 6 we show how the presented sharp convergence result
can be used to derive upper bounds for the two-grid convergence rate of a so-called “window”-
based spectral AMG method (a variant of the method proposed in Chartier et al. [9]).

2. Preliminaries

This paper is concerned with two-level hierarchical basis (TL) or more generally with two-grid
(TG) methods. We consider a vector space V , isomorphic to Rn for some n. The space V is
equipped with the usual Euclidean vector inner product 〈v, w〉 = wTv. Our focus will be on
two-level or two-grid iterative methods for the solution of

Au = f , (2.1)

where A : Rn 7→ Rn is a symmetric and positive definite (s.p.d.) matrix. A linear iterative
method takes the form: Given an initial guess u(0), we obtain each successive iterate as

u(k+1) = u(k) +B−1(f −Au(k)). (2.2)

Here we consider the case when the iterator or preconditioner B is defined via two-level or two-
grid algorithms. Our main interest is convergence of the approximate solutions u(k) defined via
(2.2) to the solution u of (2.1). This convergence rate is determined by estimating the norm
defined by the A-inner product (.)TA(.) (or the A-norm ‖ · ‖A) of the error transfer operator
E = I − B−1A. Whenever needed, we will distinguish between two-level hierarchical basis
methods and two-grid methods by denoting the corresponding preconditioner B and the error
transfer operator E with BTL, ETL and BTG, ETG respectively. The theoretical results and
algorithmic constructions we present follow the classical two-level hierarchical basis approach
(cf. Bank and Dupont, Braess, Axelsson and Gustafsson, and Yserentant, in the pioneering
papers [3, 6, 2, 16, 4]). Most of these methods are summarized in Bank [5] (see also [11] or
[14]). As usual, for two-level hierarchical basis methods, we assume that V is decomposed as
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TWO-GRID ESTIMATES 3

a direct sum
V = SVs + PVc, (2.3)

for some components Vs and Vc isomorphic to Rns and Rnc , respectively, with n = ns + nc.

A typical and simple example to keep in mind is S =

[
I

0

]
and P =

[
W

I

]
for some W

such that the square matrix [S, P ] is unit upper triangular, and hence invertible. That is,
the decomposition (2.3) is direct. For the more general case of “two-grid” methods, one may
also assume a decomposition V = SVs + PVc as in (2.3), but it does not have to be direct.
That is, one may have n ≤ ns + nc. Yet another difference is that for two-grid methods only
the coarse space PVc is explicitly needed (i.e., a basis is given), whereas the first component
(which is not unique) need not actually be specified. Usually, a one to one mapping P defines
the coarse space. Such a mapping is commonly referred to as interpolation or prolongation.
One has PVc ⊂ V , and the coarse space is Range(P ). In the two-level hierarchical basis case,
the direct decomposition V = SVs+PVc is commonly referred to as the two-level hierarchical
basis decomposition. The space Vc defines the so–called coarse degrees of freedom (or coarse–
grid variables) which are very often in practice obtained from V based on a simple (restriction)
mapping R. For the example above one can let R = [0, I]. Then Vc = RV . It is clear that
the pair [S, RT ] also provides a direct (actually orthogonal) decomposition of V , but the one
based on a P with W 6= 0 is the typical choice for many practical examples since the respective
two–level (and two–grid) methods are likely to perform much better with P than with RT .

2.1. Smoother, coarse grid matrix and projections

A two-level or two-grid method can be defined if two ingredients are in place. One of them is
the space decomposition and the other is the smoother. A smoother here will be denoted with
M , where the smoother iteration is as in (2.2) with M replacing B. The following result is
well known (and easily seen):

MT +M −A is s.p.d. ⇐⇒ ‖I −M−1A‖A < 1. (2.4)

Hence, throughout the remainder of the paper, we will assume that MT +M −A is s.p.d., or
equivalently, that the smoother iteration is a contraction in A-norm.

Various restrictions of M and A to the subspaces mentioned before will be needed. We first
define the exact coarse grid matrix Ac and its hierarchical complement As as follows

Ac = PTAP, As = STAS.

Later we will see, in the case of a two level hierarchical preconditioner, one needs M to be
well-defined only on the first (hierarchical) component SVs. In that case, we refer to M as
Ms. However, we can think of Ms as being derived from a global (not necessarily symmetric)
smoother M , i.e., that Ms = STMS where MT + M − A is positive semi-definite. As an
example, consider again the simple case where ST = [ I 0 ] and let R = [ 0 I ]. Then, A

admits the following two–by–two block form,

A =

[
ST

R

]
A[S,RT ] =

[
As START

RAS RART

]
.

Then, for a given Ms such that MT
s + Ms − As is positive definite, of interest is the block-

factored smoother

M =

[
Ms 0
RAS τ I

] [
I M−1

s START

0 I

]
,
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4 FALGOUT, VASSILEVSKI AND ZIKATANOV

where τ > 0 is a sufficiently large constant. Note that (since AT = A)

MT +M −A =

[
MT
s +Ms −As START

RAS 2τI −RART + (RAS)
(
M−1
s +M−T

s

)
(START )

]
,

which can be made positive definite if τ is sufficiently large.
The following two operators are related to the smoother M , and will be frequently used in

the definitions and analysis later on:

M̃ = MT (MT +M −A)−1M, M = M(MT +M −A)−1MT . (2.5)

Likewise, the operators M̃s and Ms are defined by replacing M and A in (2.5) by Ms and As.

Note that (I − M̃−1A) = (I −M−1A)(I −M−TA), hence M̃ is just a symmetrized version of

the smoother M (and similarly for M). Also note that M̃ = M when M is symmetric, but in

general both operators are needed: M̃ is needed for the error analysis and M is needed in the
definition of the preconditioners. Finally, we remark that if MT +M − A is positive definite,
then M̃ −A and M −A are positive semidefinite. This is easily seen from the simple relation,

M̃ −A = (X −M)X−1(X −MT ), with X = MT +M −A, (2.6)

which, with obvious change, holds for M as well.
In what follows we will need two projection operators related to the coarse space Range(P ).

We define
πA = PA−1

c PTA, πA = A
1
2 PA−1

c PTA
1
2 , (2.7)

and observe that πA is an A-orthogonal projection on Range(P ) and πA is a 〈·, ·〉-orthogonal

projection on Range(A
1
2 P ).

2.2. The strengthened Cauchy-Schwarz inequality and the Schur complement

In the analysis of the two-level hierarchical preconditioner, we will need the strengthened
Cauchy-Schwarz inequality (sometimes called the Cauchy-Bunyakowski-Schwarz, or C.B.S.
inequality), which provides a bound on the cosine of the abstract angle between two subspaces.
Assume that V = SVs + PVc is a direct decomposition and let γ2 ∈ [0, 1) be the smallest
constant in the following inequality

(wTSTAPx)2 ≤ γ2 wTSTASw xTPTAPx. (2.8)

This C.B.S. inequality implies,

wTAsw ≤
1

1− γ2
inf
x

(Sw + Px)
T
A (Sw + Px) , ∀w ∈ Vs, ∀x ∈ Vc.

The latter minimum is attained at Px = −πASw. Therefore,

wTAsw ≤ 1
1−γ2 w

T
(
ST (I − πA)

TA(I − πA)S
)
w

= 1
1−γ2 w

T
(
STA(I − πA)S

)
w.

(2.9)

As it is well known, the constant in the strengthened C.B.S. inequality is related to the spectral
equivalence between the Schur complement SA of A and Ac = PTAP . The Schur complement
SA is defined here as

xTSAx = inf
w

(Sw + Px)TA(Sw + Px). (2.10)
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One has, for any real t, assuming (2.8),

xTSAx = inf
w

inf
t

(tSw + Px)TA(tSw + Px)

= inf
w

(
xTAcx−

(
wTSTAPx

)2

wTAsw

)

≥ inf
w

(
xTAcx− γ2 xTAcx

)

= (1− γ2) xTAcx.

We will show below that the converse statement is also true.

Lemma 2.1. Consider the Schur complement SA defined in (2.10). An equivalent formulation
of the C.B.S. inequality (2.8) reads then as follows:
There exists a γ ∈ [0, 1) such that for any x ∈ Rnc , one has

(1− γ2) xTAcx ≤ xTSAx ≤ xTAcx. (2.11)

Proof. The left hand side of (2.11) together with the definition of the Schur complement SA,

imply (1− γ2) xTAcx ≤ (Px+ tSw)
T
A (Px+ tSw), for any real t. The latter shows

0 ≤ t2wTAsw + 2t wTSTAPx+ γ2 xTAcx.

Therefore, the discriminant of the above non–negative quadratic form must be non–positive,
which is in fact the C.B.S. inequality (2.8). 2

2.3. Two-level and two-grid preconditioners

Having all components in place, we are now in a position to define the classical two-level
hierarchical basis method. This method exploits a direct (hierarchical) space decomposition
V = SVs+PVc. Namely, we decompose u ∈ V uniquely as u = Sus+Puc. The problem (2.1) is

then transformed to the equivalent one, with the hierarchical basis matrix Â ≡ [S, P ]TA[S, P ]:

Â

[
us
uc

]
= [S, P ]

T
f .

Note that

Â =

[
As STAP

PTAS Ac

]
.

This transformed matrix is then used to define the preconditioner BTL in terms of its
hierarchical counterpart B̂TL.

Definition 2.1 (Two-level hierarchical basis preconditioner, BTL) Let

B̂TL =

[
I 0

PTASM−1
s I

] [
Ms 0
0 Ac

] [
I M−T

s STAP

0 I

]
.

Then, the two-level hierarchical basis preconditioner BTL is defined by returning to the original
variables,

B−1
TL = [S, P ]B̂−1

TL[S, P ]T .
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6 FALGOUT, VASSILEVSKI AND ZIKATANOV

It is clear, that to implement the actions of B−1
TL, one needs the actions of the smoothers

M−1
s , M−T

s , a coarse-grid solver to evaluate A−1
c , the actions of the interpolation (P ) and

restriction (P T ) mappings, as well as the ability to extract the hierarchical component Svs of
any vector v = Svs + RTvc, which defines S and similarly for ST . We comment on the fact
that the above definition takes the point of view that BTL is being obtained via a product
iteration scheme, in the sense that the error transfer operator ETL has the following form

ETL ≡ (I − SM−T
s STA)(I − PA−1

c PTA)(I − SM−1
s STA).

The latter represents a composite subspace iteration process; the first step being smoothing
based on Ms in the first coordinate space SVs, followed by an (exact) coarse-grid correction in
the subspace PVc and finally followed by a post-smoothing based on MT

s in the first coordinate
space SVs. From the preconditioning point of view though, one can simplify the definition
somewhat and thus end up with the following “approximate block-factorization” preconditioner
in the case of symmetric Ms such that Ms −As is positive semi–definite:

B̂a
TL =

[
Ms 0

PTAS I

] [
M−1
s 0
0 Bc

] [
Ms STAP

0 I

]
. (2.12)

Then, (Ba
TL)

−1 = [S, P ](B̂a
TL)

−1[S, P ]T is the inverse “approximate block-factorization”
preconditioner to A. This was the preconditioner originally studied in Axelsson and Gustafsson
[2] with Bc being an s.p.d. approximation to Ac.

An important observation is that in order to define B−1
TL = [S, P ]B̂−1

TL[S, P ]T , one does not
have to assume that [S, P ] is invertible, or even square. Thus, one can formally let S = I,
and hence Ms = M , and the resulting method gives the classical two-grid preconditioner BTG

with the corresponding error transfer operator defined by,

ETG ≡ (I −M−TA)(I − PA−1
c PTA)(I −M−1A). (2.13)

A more precise definition is as follows.

Definition 2.2 (Two-grid preconditioner, BTG) Let

B̂TG =

[
I 0

PTAM−1 I

] [
M 0
0 Ac

] [
I M−TAP

0 I

]
. (2.14)

Then, the two-grid preconditioner BTG is defined by

B−1
TG = [I, P ] B̂−1

TG [I, P ]
T
. (2.15)

Note that B̂TG : Rn+nc 7→ Rn+nc has a “bigger” size than BTG and A; namely, it defines
an operator acting on the product space V × Range(P ).

Lemma 2.2. The two–grid preconditioner BTG used in a stationary iterative method gives
rise to the iteration matrix ETG defined in (2.13), i.e.,

I −B−1
TGA = ETG.

Proof. From (2.14), a straightforward calculation of the inverse B̂−1
TG, gives

B̂−1
TG =

[
I −M−TAP

0 I

] [
M

−1
0

0 A−1
c

] [
I 0

−PTAM−1 I

]
· (2.16)
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TWO-GRID ESTIMATES 7

Then, forming the right-hand side of (2.15) leads to

B−1
TG =

[
I,
(
I −M−TA

)
P
] [ M

−1
0

0 A−1
c

] [
I

PT
(
I −AM−1

)
]

= M
−1

+
(
I −M−TA

)
PA−1

c PT
(
I −AM−1

)
.

Finally, since I −M
−1

A = (I −M−TA)(I −M−1A), one arrives at,

I −B−1
TGA = I −M

−1
A−

(
I −M−TA

)
PA−1

c PT
(
I −AM−1

)
A

= (I −M−TA)(I −M−1A)−
(
I −M−TA

)
PA−1

c PTA
(
I −M−1A

)

= (I −M−TA)(I − PA−1
c PTA)

(
I −M−1A

)

= ETG.

2

3. A saddle-point lemma

A crucial identity that will be used to derive the spectral equivalence results is the following
lemma, henceforth referred to as the “saddle-point lemma”. We state the lemma in a somewhat
abstract form for two vector spaces V1 and V2. We will use it with V1 = Vs for the two-level
hierarchical basis preconditioner, and with V1 = V for the two grid preconditioner. The second
space V2 will be taken to be the range of a projection on a subspace of V .

Lemma 3.1. Given two mappings T : V1 7→ V1 and N : V1 7→ V2 such that T + NTN

is invertible, with T symmetric positive semi-definite and N onto (i.e., for any vector
v ∈ V2 the equation Nw = v has at least one solution w ∈ V1), consider the mapping

Z = N
(
T +NTN

)−1
NT . We have that Z is s.p.d., and the following identity holds:

vTZ−1v

vTv
= 1 + inf

w: Nw=v

wTTw

vTv
. (3.1)

Proof. We first remark that N being onto is equivalent to NT having full column rank. It is
also easy to see that T is (symmetric) positive definite on the null-space of N .

Consider now the following quadratic constrained minimization problem: Given v ∈ V2, find
a w ∈ V1 that solves

1
2w

TTw 7→ min
subject to Nw = v.

(3.2)

By forming the Lagrangian L(w, λ) = 1
2w

TTw+λT (Nw−v) and setting its partial derivatives
to zero we get the following saddle-point problem for w and the Lagrange multiplier λ,

[
T NT

N 0

] [
w
λ

]
=

[
0
v

]
.

Our assumptions on T and N (namely, T being positive definite on the null-space of N and N T

having full column rank) tell us that the above problem has a unique solution (w∗, λ∗). It is
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8 FALGOUT, VASSILEVSKI AND ZIKATANOV

also clear that the (negative) Schur complement Z = N
(
T +NTN

)−1
NT of the saddle-point

matrix [
T +NTN NT

N 0

]
,

is. s.p.d. (hence invertible). Since (w∗, λ∗) solves the equivalent problem,
[

T +NTN NT

N 0

] [
w
λ

]
=

[
NTv
v

]
,

one gets the identity,

w∗ =
(
T +NTN

)−1
NT (v − λ∗),

which implies

v = Nw∗ = N
(
T +NTN

)−1
NT (v − λ∗) = Z(v − λ∗).

Hence, v − λ∗ = Z−1v, and therefore vTv − vTλ∗ = vTZ−1v. The latter implies (using
v = Nw∗, and NTλ∗ = −Tw∗)

vTv +wT
∗ Tw∗ = vTZ−1v.

Next, since w∗ solves the constrained minimization problem (3.2) we arrive at the desired
identity (3.1). 2

4. Sharp spectral equivalence results

Our main goal in this section will be to obtain a suitable expression for the best constant K

taking part in the spectral equivalence relations between A and B, for B = BTL and B = BTG:

vTAv ≤ vTBv ≤ K vTAv. (4.1)

We will try to handle both cases (the hierarchical two-level and the two-grid one)
simultaneously by introducing the notation:M≡ JTMJ and A ≡ JTAJ , where either J = S

or J = I. That is, either M = STMS = Ms and A = STAS = As, or M = M and A = A.
With this, and considering also the case of B = B̂a

TL, we can write the general error transfer
operator for (2.2) as follows (the specific operators ETL and ETG were defined in Section 2.3):

I −B−1A = E ≡ (I − JM−TJTA)(I − PD−1PTA)(I − JM−1JTA), (4.2)

where D is an s.p.d. approximation to the coarse-grid matrix Ac = PTAP . Of particular
importance is the case D = Ac, which we consider in great detail, but we also point out how
the convergence rate can be estimated using an appropriate approximation D to Ac.

Multiplying both sides of (4.2) by A we get that

AE = A
1
2 (I −A

1
2 JM−TJTA

1
2 )(I −A

1
2 PD−1PTA

1
2 )(I −A

1
2 JM−1JTA

1
2 )A

1
2 . (4.3)

Let us denote for a moment X = (I − A
1
2 PD−1PTA

1
2 ). Note that if D is defined such that

vTc Dvc ≥ vTc Acvc, then both X (see Lemma 4.1 for details) and AE are symmetric positive

semi-definite. Equivalently, one has that A
1
2 EA− 1

2 = I−A
1
2 B−1A

1
2 is also symmetric positive
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semi–definite, which guarantees that the left-hand inequality in (4.1) holds assuming that B−1

is s.p.d. The latter follows from the fact that ‖E‖A ≤ 1, which is seen from (4.2) and (2.4).

Consider now the right-hand inequality in (4.1). Since AE is symmetric positive semi-

definite, then ‖E‖A is given by the largest eigenvalue of A
1
2 EA− 1

2 , or equivalently by 1− 1
K .

But, X being symmetric positive semi–definite implies that X
1
2 is well-defined, and it is obvious

from ‖G‖ = ‖GT ‖, for G = X
1
2 (I −A

1
2 JM−1JTA

1
2 )), that the largest eigenvalue of

A
1
2 EA− 1

2 = (I −A
1
2 JM−TJTA

1
2 )X(I −A

1
2 JM−1JTA

1
2 )

is the same as the the largest eigenvalue of

Θ ≡ X
1
2 (I −A

1
2 JM−1JTA

1
2 )(I −A

1
2 JM−TJTA

1
2 )X

1
2 .

Therefore, we will proceed with estimating the last expression.

In what follows we consider the case D = Ac. The inexact coarse matrix D will be commented
on in more detail in Section 4.1. One notices then that X = I − πA and the square root can
be removed, because X2 = X (and hence X = X

1
2 ) in this case. Recalling the definition (2.5)

of M̃ , consider then the expression

vTΘv = (Xv)T
(
I −A

1
2 J
(
M−1 +M−T −M−1(JTAJ)M−T

)
JTA

1
2

)
(Xv)

= (Xv)T
(
I −A

1
2 J
(
M−1 +M−T −M−1AM−T

)
JTA

1
2

)
(Xv)

= (Xv)T
(
I −A

1
2 JM̃−1JTA

1
2

)
(Xv)

= vT (I − πA)
2v − vT (I − πA)A

1
2 JM̃−1JTA

1
2 (I − πA)v

= ((I − πA)v)
T
(
I − (I − πA)A

1
2 JM̃−1JTA

1
2 (I − πA)

)
(I − πA)v

≤
(
1− 1

K

)
((I − πA)v)

T
(I − πA)v.

The smallest (i.e. the best) constant K in the above inequality can then be defined via the
following relation

1

K
= inf

v

vT
(
(I − πA)A

1
2 JM̃−1JTA

1
2 (I − πA)

)
v

vT (I − πA)v
. (4.4)

Since above in (4.4) we have M̃−1, we will use Lemma 3.1 to get an estimate in terms of M̃
instead in the next theorem. We would also like to point out that the expression for K in (4.5)
below is related to the identity of Xu and Zikatanov [15] (valid for abstract iteration methods).
Although it may be possible, the derivation of the relation (4.5) with the techniques from [15]
is not at all straightforward, and our direct proof here is better suited for the convergence
analysis of two-level and two-grid methods given later on.

Theorem 4.1. Assume that J and P are such that any vector v can be decomposed as
v = Jw + Px. Then the best constant K in (4.1) is given by

K = sup
v∈Range(I−πA)

inf
w: v=(I−πA)Jw

wTM̃w

vTAv
. (4.5)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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10 FALGOUT, VASSILEVSKI AND ZIKATANOV

Proof. Let N = (I − πA)A
1
2 J . Then

NTN = JT
(
A

1
2 (I − πA)

2A
1
2

)
J = JTA(I − πA)J.

Define
T = M̃ − JTA(I − πA)J = M̃ −A+ JTAπAJ.

It is clear that T is symmetric positive semi-definite. We also have,

M̃ = T +NTN.

We point out here, that in order to apply Lemma 3.1, a minor (but very important) detail
needs to be checked out; namely, whether or not the mapping N : Vs 7→ Range(I − πA), when
J = S is onto. This is done in the following way. Let x 6= 0, x ∈ Range(I − πA) be given. We
will find a w ∈ Vs, such that Nw = x. Since x ∈ Range(I − πA) there is a v ∈ V , such that
x = (I − πA)v. By the assumptions of the theorem, the following decompositions hold,

A−1/2v = Jw + Py, and v = A1/2Jw +A1/2Py.

Since (I − πA)A
1
2 P = 0, one gets that x = Nw. Then the “saddle-point” lemma 3.1 with

Z = N
(
T +NTN

)−1
NT = (I − πA)A

1
2 JM̃−1JTA

1
2 (I − πA) and V2 = Range(I − πA),

applied to identity (4.4), gives us the new identity

1

K
= inf

v∈V2

vTZv

vTv
= inf

v∈V2

vTv

vTZ−1v
=

1

1 + sup
v∈V2

inf
w: Nw=v

wTTw
vTv

. (4.6)

Further, in the denominator on the right hand side of (4.6) we have v = Nw = (I−πA)A
1
2 Jw.

Replace now v ≡ A
1
2v. This implies that Nw = A

1
2v, or A

1
2v = (I − πA)A

1
2 Jw; that is,

v = (I − πA)Jw. Identity (4.6) then leads to (noticing that now v ∈ Range(I − πA))

K = 1 + sup
v∈Range(I−πA)

inf
w: v=(I−πA)Jw

wTTw

vTAv
.

We also have,
wTTw = wTM̃w −wTNTNw = wTM̃w − vTAv.

Substituting the last expression in the above formula for K, implies the desired result (4.5). 2

Corollary 4.1. Assume that S and P provide a unique decomposition; namely, that [S, P ] is
an invertible square matrix. Then,

K = sup
w

wT M̃sw

wTST (I − πA)A(I − πA)Sw
. (4.7)

Proof. Note that for v = (I − πA)Sw, we also have v = Sw + P (−A−1
c PTA)(Sw). Then,

since S and P provide a unique decomposition of v = Sw + Px, this shows that the second
component of v (which is in fact unique) equals x = −A−1

c (PTA)(Sw). I.e., there is no inf in
the formula for K. Thus,

K = sup
w

wT M̃sw

wTSTA(I − πA)Sw
,

which is the same as (4.7). 2

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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4.1. Analysis of the two-level hierarchical basis preconditioner BTL

We will now derive an upper bound for K in the case of S (i.e., J = S) and P providing
a unique decomposition. We recall that A = STAS = As. The following lemma gives the
monotone dependence of B − A on D − Ac, and is needed in proving Theorem 4.2. We recall
that D is a spectrally equivalent approximation to the exact coarse matrix Ac = PTAP (used
in (4.2)).

Lemma 4.1. If D −Ac is symmetric positive semidefinite, then B −A is symmetric positive
semidefinite.

Proof. Since Ac = PTAP , and hence ‖G‖ = ‖GT ‖ = 1 for G = A
− 1

2
c PTA

1
2 , we have that

vTA−1v ≥ (PTv)TA−1
c (PTv).

This and the assumptions of the lemma lead to the inequality

vTA−1v ≥ (PTv)TD−1(PTv),

which is equivalent to

vT
(
I −A

1
2 PD−1PTA

1
2

)
v ≥ 0.

Hence, AE = A(A−1−B−1)A is symmetric positive semi-definite, which is equivalent to B−A

being symmetric positive semi-definite. 2

Theorem 4.2. Assume thatMs provides a convergent splitting for As in the As-inner product,
i.e., that

(
Ms +MT

s −As

)
is s.p.d. Also, let γ ∈ [0, 1) be the constant in the strengthened

Cauchy-Schwarz inequality (2.8). Then BTL (i.e., B with D = Ac; see Definition 2.1) and A

are spectrally equivalent and the following bounds hold:

vTAv ≤ vTBTLv ≤ KvTAv, K ≤
1

1− γ2
sup
w

wT M̃sw

wTAsw
. (4.8)

In the case of B with an inexact second block D that satisfies

0 ≤ xT (D −Ac)x ≤ ∆ xTAcx,

the following perturbation result holds,

vTAv ≤ vTBv ≤

(
K +

∆

1− γ2

)
vTAv.

Proof. The estimate (4.8) follows from (4.7) and (2.9), which combined give the following
upper bound for K,

K ≤ sup
w

wT M̃sw

wTAsw

1

1− γ2
,

The proof is completed by using Lemma 4.1, (2.11), and some obvious inequalities as follows:

0 ≤ vT (B −A)v = vT (BTL −A)v + xT (D −Ac)x, x = PTv,
≤ vT (BTL −A)v +∆xTAcx
≤ vT (BTL −A)v + ∆

1−γ2 x
TSAx

≤ vT (BTL −A)v + ∆
1−γ2 v

TAv

≤
(
K − 1 + ∆

1−γ2

)
vTAv.
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12 FALGOUT, VASSILEVSKI AND ZIKATANOV

2

The latter result is a generalization of a main two-level convergence theorem found in [2].
A more detailed study of the (two-level) approximate block-factorization preconditioners Ba

TL

(defined as in (2.12)) is found in Chapter 9 of [1]. Note that in the classical two-level hierarchical
basis methods, As happens to be well-conditioned, so it is not that impractical to let Ms = As.
Then, K = 1

1−γ2 (if D = Ac), i.e., the two-level convergence factor %(ETL) = 1 − 1
K = γ2

equals to the cos2 of the abstract angle between the hierarchical components Range(S) and
Range(P ), a well-known classical result.

4.2. Analysis of the two-grid preconditioner BTG

Here, we consider the case of B = BTG, i.e., J = I. The analysis follows the lines of the
analysis from the previous Section 4.1, and in a similar fashion one obtains that the smallest
constant K is given by the identity (see (4.5) in Theorem 4.1)

K = sup
v∈Range(I−πA)

inf
w: v=(I−πA)w

wT M̃w

vTAv
.

That is,

K = sup
v

inf
w

(πAw + (I − πA)v)
T
M̃ (πAw + (I − πA)v)

((I − πA)v)
T
A ((I − πA)v)

.

The inf over w is attained at w : πA(v −w) = π
M̃
v, that is,

A−1
c PTA(v −w) = M̃−1

c PT M̃v.

Here M̃c = PT M̃P and π
M̃

= PM̃−1
c PT M̃ . For a w = Pwc one has A−1

c PTAw = wc. Hence,

wc = A−1
c PTAv − M̃−1

c PT M̃ v.

This implies, πAw = Pwc = (πA− π
M̃
)v. Therefore, πAw+ (I − πA)v = (I − π

M̃
)v. Thus we

arrive at the final estimate which is formulated in the next theorem.

Theorem 4.3. The convergence factor of the two-grid method, %(ETG) = 1 − 1
K , is

characterized by

K = sup
v

(
(I − π

M̃
)v
)T

M̃(I − π
M̃
)v

((I − πA)v)TA(I − πA)v
= sup

v

vT M̃(I − π
M̃
)v

vTAv
. (4.9)

Proof. The second identity in (4.9) is based on the relation (I − π
M̃
)(I − πA) = I − π

M̃
and

the inequality vTA(I − πA)v ≤ vTAv. 2

Remark 4.1. Consider the case when the coarse degrees of freedom are defined on the basis
of a mapping R : Rn 7→ Rnc such that RP = I. Let Q = PR. Note that Q is a projection
(i.e., Q2 = Q). Next, noticing that

‖(I − π
M̃
)e‖2

M̃
= inf

v∈Range(P )
‖e− v‖2

M̃
≤ ‖e− PRe‖2

M̃
,
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one gets the upper bound K ≤ supe µ
M̃
(Q, e), where the latter quantity (sometimes called

measure) is given by

µ
M̃
(Q, e) =

〈M̃(I −Q)e, (I −Q)e〉

〈Ae, e〉
.

The measure µ
M̃
(Q, e) was the main ingredient used in [12] to find sufficient conditions for

the two-grid convergence of the respective AMG method. With the above Theorem 4.3 in hand,
we are now able to show that the conditions from [12] are also necessary (in the sense of the
next two corollaries 4.2–4.3).

Corollary 4.2. For any v in the space Range(I − π
M̃
), one has the spectral equivalence

relations,
vTAv ≤ vT M̃v ≤ K vTAv, (4.10)

where K is defined via (4.9). Moreover, if S is such that Range(S) = Range(I − π
M̃
), an

analogous spectral equivalence relations between As = STAS and M̃s = ST M̃S holds, namely:

vTs Asvs ≤ vTs M̃svs ≤ K vTs Asvs.

Proof. Using the inequalities

‖(I − πA)w‖A = inf
v∈Range(P )

‖w − v‖A ≤ ‖(I − π
M̃
)w‖A,

and vTAv ≤ vT M̃v, the result is straightforward. 2

Evidently, one may restate (4.10) by saying that in a space complementary to the coarse

space Range(P ), the symmetrized smoother M̃ is an efficient preconditioner for A. Letting

R∗ = M̃−1
c PT M̃ , one candidate for an S that spans the space Range(I−π

M̃
) is S = I−PR∗.

One notices that R∗P = I (and R∗S = 0), i.e., we are in the setting of Remark 4.1 with
R = R∗. We point out that R∗ is the optimal mapping that defines the coarse degrees of
freedom, in the sense that such a choice will provide the best convergence rate. Note that,
for given sparse operators P and M (or its symmetrized version M̃), the optimal R is not in

general sparse, due to presence of M̃−1
c in its definition. However, in the following important

example, R∗ happens to be the simple injection mapping.

Example 4.1. Consider a two–by–two block partitioning of A,

A =

[
Aff Afc

Acf Acc

]
,

corresponding to a “f” and “c” block–partitioning of the vectors v =

[
vf
vc

]
in V . Introduce

the splitting A = DA − L− U , with

DA =

[
Aff 0
0 Acc

]
, −L =

[
0 0

Acf 0

]
, and U = LT .

For two given (not necessarily symmetric) matrices Mff and Mcc, consider the interpolation
matrix

P =

[
−M−1

ff Afc

I

]
,

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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14 FALGOUT, VASSILEVSKI AND ZIKATANOV

and the (inexact) block Gauss–Seidel smoother (also called “c”–”f” relaxation)

M =

[
Mff Afc

0 Mcc

]
= D − U, D =

[
Mff 0
0 Mcc

]

Then, R∗ = M̃−1
c PT M̃ = [0, I], i.e., R∗ is the trivial injection mapping. The optimal S

defined as S∗ = I − π
M̃
takes the simple form S∗ = I − PR∗ =

[
I M−1

ff Afc

0 0

]
. The latter

shows that Range(S∗) = Range

[
I

0

]
. Finally, the corresponding two–grid convergence factor

%(ETG) = 1− 1
K is characterized with the identity (assuming that ‖I −M−1A‖A < 1),

K = sup
e

µ
M̃
(Q, e),

where Q = PR∗, and µ
M̃
(Q, e) = 〈M̃(I−Q)e, (I−Q)e〉

〈Ae, e〉 is the measure used in [12].

Proof. One has, assuming that all inverses below exist,

PT M̃ =
[
−AcfM

−T
ff , I

]
MT

(
M +MT −A

)−1
M

=
[
−AcfM

−T
ff , I

] [
MT
ff 0

Acf MT
cc

] (
DT +D −DA

)−1
M

=
[
0, MT

cc

] (
DT +D −DA

)−1
M

=
[
0, MT

cc

(
MT
cc +Mcc −Acc

)−1]
[

Mff Afc

0 Mcc

]

=
[
0, MT

cc

(
MT
cc +Mcc −Acc

)−1
Mcc

]
.

Therefore,

M̃c = PT M̃P =
[
0, MT

cc

(
MT
cc +Mcc −Acc

)−1
Mcc

] [ −M−1
ff Afc

I

]

= MT
cc

(
MT
cc +Mcc −Acc

)−1
Mcc.

Finally,

R∗ = M̃−1
c PT M̃

= M−1
cc (MT

cc +Mcc −Acc)M
−T
cc

[
0, MT

cc

(
MT
cc +Mcc −Acc

)−1
Mcc

]

= [0, I] .

That is, R = R∗ is the simple injection mapping. The rest follows from the definition of
S∗ = I − π

M̃
= I − PR∗ = I −Q and Theorem 4.3. 2

In the general case, for any well-conditioned smoother M̃ (as the standard ones are, consider

for example Richardson or overlapping additive Schwarz method), the entries of M̃−1
c will

have a fast decay rate away from the diagonal (similar to the inverse of a finite element mass-
matrix). The latter result can be rigorously proved (cf., e.g., [10]). Therefore, reasonably sparse
approximations R to R∗ will be available, and hence using such a sparse R in practice will
be a feasible and accurate enough choice. Of course, using an approximation, as indicated in

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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Remark 4.1, will only give upper bounds for K. More specifically, we will have K ≤ 1
λmin

by
finding (accurate) bounds of the minimal eigenvalue λmin of the generalized eigenvalue problem

Aq = λ(I −QT )M̃(I −Q)q

where Q = PR. Notice that the above eigenvalue problem takes a particularly appealing form
in the case of Example 4.1, but this is left for future study and is not considered further in
this paper. A somewhat simpler approach for estimating K is found in Theorem 5.1.

Corollary 4.3. The following three statements are equivalent, and they are necessary
conditions for uniform convergence of the two grid method:

1. (I − π
M̃
) is bounded in A-norm

(
(I − π

M̃
)v
)T

A(I − π
M̃
)v ≤ K vTAv.

2. π
M̃
is bounded in A-norm

(
π
M̃
v
)T

Aπ
M̃
v ≤ K vTAv.

3. The spaces Range(S) ≡ Range(I−π
M̃
) and Range(P ) have a non-trivial angle in A-inner

product, that is,

(
vTs S

TAPx
)2
≤ (1−

1

K
) vTs Asvs x

TAcx, for any vs and x.

Proof. We first give an argument that the three statements are equivalent. Consider the

quadratic form Q(t) = (π
M̃
v + tSvs)

TA(π
M̃
v + tSvs) −

1
K

(
π
M̃
v
)T

Aπ
M̃
v. Note, that

π
M̃

Svs = 0, hence π
M̃

(v + tSvs) = π
M̃
v. This shows that Q(t) ≥ 0 for any real t if π

M̃
is A-bounded. Then the fact that its discriminant is non-positive, shows the strengthened
Cauchy-Schwarz inequality since Range(π

M̃
) = Range(P ). The argument goes both ways.

Namely, the strengthened Cauchy-Schwarz inequality implies that the discriminant is non-
positive, hence Q is non-negative, that is, π

M̃
is bounded in energy. Due to the symmetry of

the strengthened Cauchy-Schwarz inequality one sees that I − π
M̃

has the same energy norm
as π

M̃
(if π

M̃
6= I, 0). That these are necessary conditions follows from Theorem 4.3. 2

5. Algebraic two-grid methods and preconditioners

Corollaries 4.2 and 4.3 represent the main foundation for constructing efficient two-grid
preconditioners. Namely, one needs a coarse space Range(P) such that there is a complementary
one, Range(S), with the properties:

(i) the symmetrized smoother restricted to the subspace Range(S), i.e., ST M̃S, is spectrally
equivalent to the subspace matrix STAS, and

(ii) the complementary spaces Range(S) and Range(P ) have a non-trivial angle in A-inner
product; that is, they are almost A-orthogonal.
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Prepared using nlaauth.cls



16 FALGOUT, VASSILEVSKI AND ZIKATANOV

In practice, one needs a sparse matrix P so that the coarse matrix P TAP is also sparse,
whereas explicit knowledge of the best S is not really needed. If P and S are constructed
based solely on A, and similarly the smoother M (or the symmetrized one, M̃) comes from a
convergent splitting of A, then the resulting method (or preconditioner) belongs to the class of
“algebraic” two-grid methods (or preconditioners) or simply AMG (when several coarsening
levels are used). For some basic facts about AMG we refer the reader to, e.g., Ruge and
Stüben [13], or the tutorial [8].

In order to guarantee the efficiency of the method, one only needs an S (not necessarily

the best one defined as Range(I − π
M̃
)) in order to test if the subspace smoother ST M̃S is

efficient on the subspace matrix STAS. That is, one needs an estimate (for the particular S)

vTs Asvs ≤ vTs M̃svs ≤ κ vTs Asvs, (5.1)

with a reasonable constant κ. The efficiency of the smoother on the complementary space
Range(S) is sometimes referred to as efficient compatible relaxation. The latter notion is due
to Achi Brandt [7].

The second main ingredient is the energy boundedness of P in the sense that for a small
constant η one wants the bound,

xTAcx ≤ η inf
vs: v=Svs+Px

vTAv. (5.2)

For the simple example of S = [ I 0 ]
T

and P =

[
W

I

]
, letting R = [0, I], one can show

(see [12]) that (5.2) is equivalent to Q ≡ PR being bounded in energy, i.e.,

vTQTAQv ≤ η vTAv.

Since P : RP = I, then Q2 = Q, i.e., Q is a projection, the above estimate is equivalent
(noting that Q 6= I and Q 6= 0) to

((I −Q)v)TA(I −Q)v ≤ η vTAv.

It is clear then, that a sufficient condition for P to be bounded is to establish the following
“weak approximation property”,

‖A‖‖v − PRv‖2 ≤ η vTAv,

which was a common tool used in the classical two-(and multi-)grid convergence theory. One
can actually prove the following main result in the general case (see Theorem 4.2 in [12]).

Theorem 5.1. Assume that the estimates (5.1) and (5.2) hold true. Then the two-grid
preconditioner B = BTG is spectrally equivalent to A with a constant K ≤ ηκ.

Proof. We have to estimate K defined in (4.9). Since Range(S) is complementary to Range(P )
(by assumption), then any v can be uniquely decomposed as v = Svs + Px. The term in the
numerator of (4.9) can be estimated as follows,

((I − π
M̃
)v)T M̃((I − π

M̃
)v = inf

y
(v − Py)T M̃(v − Py)

≤ (v − Px)T M̃(v − Px)

= vTs S
T M̃Svs

≤ κ vTs S
TASvs.
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In the last line above we used (5.1).
The energy boundedness in (5.2) implies a strengthened Cauchy–Schwarz inequality for

Range(S) and Range(P ) (see (2.11) in subsection 2.2). As also demonstrated in subsection
2.2, the Cauchy–Schwarz inequality implies the following energy boundedness of S,

vTs S
TASvs ≤ η inf

x: v=Svs+Px
vTAv.

Using the projection πA, one gets

vTs S
TASvs ≤ η ((I − πA)Svs)

TA(I − πA)Svs.

Finally, since (I−πA)Px = 0, one arrives at the following bound for the denominator of (4.9),

vTs S
TASvs ≤ η ((I − πA)(Svs + Px))TA(I − πA)(Svs + Px)

= η ((I − πA)v)
TA(I − πA)v.

Thus, (4.9) is finally estimated as follows

K = sup
v

((I − π
M̃
)v)T M̃(I − π

M̃
)v

((I − πA)v)TA(I − πA)v
≤ sup

vs

κ vTs S
TASvs

1
ηv

T
s S

TASvs
= κ η.

2

6. Window based spectral AMG

In the present section we provide a purely algebraic way of selecting coarse degrees of freedom
and a way to construct an energy bounded interpolation matrix P . In the analysis, we will use a
simple Richardson iteration as a smoother. The presented method is an “element-free” version
of the spectral AMGe method studied in Chartier et al. [9]. All definitions and constructions
below are valid in the case when A is positive and only semidefinite, i.e. may have nonempty
null space Null(A).

We consider the problem (2.1) and reformulate it in the following equivalent least squares
minimization:

u = argmin
v

∑

w

‖Awv − fw‖
2
Dw . (6.1)

In the least squares formulation, each w is a subset of {1, . . . , n}, and we assume that

∪w = {1, . . . , n},

where the decomposition can be overlapping. The sets w are called windows, and represent
a grouping of the rows of A. The corresponding rectangular matrices we denote by Aw, i.e.,
Aw = {Aij}i∈w,j=1:n. Thus we have that Aw ∈ R|w|×n, where | · | stands for cardinality.
Accordingly in (6.1), fw = f |w = {fi}i∈w denotes a restriction of f to a subset and
Dw = (Dw(i))i∈w are diagonal matrices with non–negative entries, such that for any i,∑

w: i∈w Dw(i) = 1, that is, {Dw}w provide a partition of unity. Vanishing the first variation
of the least squares functional, we obtain that the solution to the minimization problem (6.1)
satisfies ∑

w

(Aw)
TDwAwu =

∑

w

(Aw)
TDwfw. (6.2)
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18 FALGOUT, VASSILEVSKI AND ZIKATANOV

With the specific choice of {Dw}w, it is clear that (6.1) is equivalent to the standard least–
squares problem, that is, ∑

w

‖Awv − fw‖
2
Dw = ‖Av − f‖2.

Therefore we obtain the identity,

vT

(
∑

w

(Aw)
TDwAw

)
v = vTATAv. (6.3)

We emphasize that we will not solve the equivalent least squares problem (6.2) and it has
only been introduced as a motivation to consider the “local” matrices (Aw)

TDwAw as a tool
for constructing sparse (and hence local) interpolation mapping P which we explain below. Of
interest will be the Schur complements Sw, that are obtained from the matrices (Aw)

TDwAw

by eliminating the entries outside w. More specifically, let (after proper reordering of the
columns of Aw),

Aw =
[

Aww Aw,χ

]
(6.4)

where Aww is the square principal submatrix of A corresponding to the subset w and Aw,χ

corresponds to the remaining columns of Aw with indices outside w. Then, Sw is characterized
by the identity

vTwSwvw = inf
vχ

[
vw
vχ

]T
(Aw)

T
DwAw

[
vw
vχ

]
. (6.5)

An explicit expression for Sw is readily available. Let AT
w,χDwAw,χ = QTΛQ with QT = Q−1

and Λ = diag (λ) being diagonal matrix with eigenvalues which are non–negative. Letting
Λ+ = diag (λ+), where λ+ = 0 if λ = 0, and λ+ = λ−1 if λ > 0, one has the expression,

Sw = (Aww)
TDwAww − (Aww)

TDwAw,χQ
TΛ+QAT

w, χDwAww.

Note that Sw is symmetric and positive semidefinite by construction (see (6.5)), and one has
the inequality

(vw)
TSwvw ≤ vT (Aw)

TDwAwv, vw = v|w .

Hence
∑

w

(vw)
TSwvw ≤ vT

(
∑

w

(Aw)
TDwAw

)
v = vTATAv ≤ ‖A‖ vTAv. (6.6)

This inequality implies (letting v = 0 outside w) that (vw)
TSwvw ≤ ‖A‖ v

TAv ≤ ‖A‖2 vTv =
‖A‖2 vTwvw, that is,

‖Sw‖ ≤ ‖A‖
2. (6.7)

Selecting coarse degrees of freedom

Our goal will be to select a coarse space. The way we do that will be by fixing a window and
associating with it a number mw ≤ |w|. Then we construct mw basis vectors (columns of P )
corresponding to this window in the following way: All the eigenvectors and eigenvalues of
Sw are computed and the eigenvectors corresponding to the first mw eigenvalues are chosen.
Since generally the windows have overlap, another partition of unity is constructed, with non–
negative diagonal matrices {Qw} where each Qw is non-zero only on w and the set {Qw}
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satisfies
∑
w

Qw = I. From the first mw eigenvectors of Sw extended by zero outside w, we

form column-wise the local interpolation matrix Pw which hence has mw columns. The global
interpolation matrix is then defined as

P =
∑

w

Qw [0, Pw, 0] .

Here, for a global coarse vector vc = (vcw), the action of [0, Pw, 0] is defined such that
[0, Pw, 0]v

c = Pw(v
c|w) = Pwv

c
w.

The remainder of this section follows the presentation in [9], but the main result (Theorem
6.1) utilizes our main identity (4.9). The first result concerns the null-space of A, namely, that
it is contained in the range of the interpolation P .

Lemma 6.1. Suppose that mw is such that mw ≥ dim Null (Sw) for every window w. Then
Null (A) ⊂ Range (P ), that is, if Av = 0, then there exists a vc ∈ Rnc such that v = Pvc.

Proof. Let Av = 0. Then from inequality (6.6) it follows that Swvw = 0, where vw = v|w
and we extend vw by zero outside w whenever needed. Hence, by our assumption on mw there
exists a local coarse grid vector vcw such that vw = Pwv

c
w. Let v

c be the composite coarse grid
vector that agrees with vcw on w, for each w. This is simply the collection vc = (vcw). Then,

Pvc =
∑

w

QwPwv
c
w =

∑

w

Qwvw =
∑

w

Qwv = v.

2

Two-grid convergence

First, we prove a main coarse-grid “weak approximation property”.

Lemma 6.2. Assume that the windows {w} are selected in a “quasi-uniform” manner such
that for all w the following uniform estimate holds:

‖Sw‖ ≥ η‖A‖2. (6.8)

Note that η ≤ 1 (see (6.7)). Assume that we have chosen mw so well that for a constant δ > 0
uniformly in w one has

‖Sw‖ ≤ δλmw+1(Sw), (6.9)

where λmw+1(Sw) denotes the (mw + 1)th smallest eigenvalue of Sw. It is clear that δ ≥ 1.
Then, for any vector e ∈ Rn, there exists a global interpolant ε in the range of P such that

(e− ε)TA(e− ε) ≤ ‖A‖‖e− ε‖2 ≤
δ

η
eTAe. (6.10)

Before we present the proof of the lemma, we would like to illustrate how the assumptions
(6.8) and (6.9) can be verified. Consider the simple example, when A corresponds to a finite
element discretization of the Laplace operator on uniform triangular mesh on the unit square
domain Ω with Neumann boundary conditions. One first notices that the entries of A are mesh
independent. Therefore ‖A‖ is bounded above by a mesh–independent constant (‖A‖ ≤ 8).
Let h = 1

m0m
be the fine–grid mesh size for a given integer m and a fixed (independently of
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m) integer m0 > 1. Let H = 1
m . This implies that Ω can be covered exactly by m2 equal

coarse rectangles of size H = m0h. Each coarse rectangle defines a window as the set of indices
corresponding to the fine–grid nodes contained in that coarse rectangle. There are (m0 + 1)2

nodes per rectangle and all the rectangles form an overlapping partition of the grid. A simple
observation is that any such rectangle can have 0, 1 or 2 common sides with the boundary of
Ω and therefore, there are only three different types of window matrices Aw and respective
Schur complements Sw. It is clear then that inequalities of the type (6.8) and (6.9) are feasible
for a mesh independent constant η and for a mesh–independent choice of mw. For the simple
example in consideration, fix m0 > 3, hence (m0 + 1)2 > 4(m0 + 1); that is, let the number of
nodes in w be larger than the number of its outside boundary nodes (i.e., nodes outside w, that
are connected to w through non–zero entries of Aw, χ). From (6.5) it is clear that if Swvw = 0
then there is a vχ such that Awwvw + Aw,χvχ = 0. Since in our case Aww is invertible, one
has then that the dimension of the null-space of Sw equals the dimension of Range(Aw, χ).
The latter is bounded above by 4(m0 + 1) (which is the number of nodes outside w that are
connected to w through non–zero entries of Aw, χ). Therefore, we may choose any fixed integer
mw ≥ 4(m0+1) (and mw < (m0+1)2) to guarantee estimate (6.9) since then λmw+1(Sw) > 0.
The number of coarse degrees of freedom (or dofs) then equals mwm

2. This implies that the
coarsening factor, defined below, will satisfy

# fine dofs

# coarse dofs
=

(mm0 + 1)2

mwm2
=

(m0 +
1
m )2

mw
'

m20
mw

.

For example, if we choose mw = 4(m0 + 1), the coarsening factor is ' m0

4+ 4
m0

. It is strictly

greater than one if m0 > 4, and it can be made as large as needed by increasing m0. (The
latter, of course, reflects the size of the windows.) In conclusion, in this simple example, one

can easily see that the bounds η = min
w

‖Sw‖
‖A‖2 ≤ 1 and δ = max

w

‖Sw‖
λmw+1(Sw)

≥ 1 are fixed

mesh independent constants. This is true, since the matrices Sw are finite number, the number
mw is fixed, and therefore the eigenvalues λmw+1(Sw) are also finite number, and all these
numbers have nothing to do with m (or the mesh size h 7→ 0). Similar reasoning can be
applied to more general quasi-uniform meshes. This is the case if the windows can be chosen
such that the matrices (Aw)

TDwAw and Sw are spectrally equivalent to a finite number of
mesh–independent reference ones. The constants in the spectral equivalence then will only
depend on the angles in the mesh.

Proof of Lemma 6.2. The analysis follows [9]. Let e ∈ Rn be given. Note that our assumption
on mw is equivalent to the assumption that, for any window w, there exists a εw in the range
of Pw such that

‖Sw‖‖ew − εw‖
2 ≤ δ eTwSwew, (6.11)

where ew = e|w and whenever needed we consider ew and εw extended by zero outside w. We
now construct an ε in the range of P which will satisfy (6.10). Namely, we set ε =

∑
w Qwεw.
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One notices that
∑

w Qwε = ε =
∑

w Qwεw. Hence,

‖e− ε‖2 = (e− ε)T
(∑
w

Qw(e− ε)

)

= (e− ε)T
(∑
w

Qw(ew − εw)

)

=
∑
w

(
Q

1
2
w(e− ε)

)T (
Q

1
2
w(ew − εw)

)

≤

[∑
w
(e− ε)TQw(e− ε)

] 1
2
[∑
w
‖Q

1
2
w(ew − εw)‖

2

] 1
2

= ‖e− ε‖

[∑
w
‖Q

1
2
w(ew − εw)‖

2

] 1
2

.

That is,

‖e− ε‖2 ≤
∑

w

‖Q
1
2
w(ew − εw)‖

2.

Therefore, based on (6.11), the quasi-uniformity of {w}, and inequality (6.6), one gets

‖e− ε‖2 ≤
∑

w

‖Q
1
2
w(ew − εw)‖

2 ≤
∑

w

‖ew − εw‖
2

≤ δ
∑

w

eTwSwew
‖Sw‖

≤
δ

η‖A‖2

∑

w

eTwSwew

≤
δ

η‖A‖2
eTATAe ≤

δ

η‖A‖
eTAe.

2

We will use estimate (6.10) to show that the two-grid method with the Richardson iteration

matrix M = ‖A‖
ω I, ω ∈ (0, 2), which leads to M̃ = M(2M − A)−1M = ‖A‖2

ω2 (2‖A‖ω I − A)−1,
is uniformly convergent. More specifically, we have the following main spectral equivalence
result.

Theorem 6.1. The algebraic two-grid preconditioner B, based on the Richardson smoother

M = ‖A‖
ω I, ω ∈ (0, 2), and the coarse space based on P constructed by the window spectral

AMG method, is spectrally equivalent to A and the following estimate holds:

vTAv ≤ vTBv ≤
δ

ηω(2− ω)
vTAv.

The term δ
η comes from the coarse-grid approximation property (6.10).

Proof. One first notices that

wT M̃w =
‖A‖2

ω2
wT

(
2
‖A‖

ω
I −A

)−1

w ≤
‖A‖

ω(2− ω)
wTw =

1

2− ω
wTMw.
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Then, based on the M̃ -norm minimization property of the projection π
M̃
, one has,

((I − π
M̃
)v)T M̃(I − π

M̃
)v = inf

ε∈Range(P )
(v − ε)T M̃(v − ε)

≤
1

2− ω
inf

ε∈Range(P )
(v − ε)TM(v − ε)

=
‖A‖

ω(2− ω)
inf

ε∈Range(P )
‖v − ε‖2

≤
1

ω(2− ω)

δ

η
vTAv.

Thus based on Theorem 4.3 we have that the corresponding two-grid preconditioner B is
spectrally equivalent to A with a constant

K = sup
v

((I − π
M̃
)v)T M̃(I − π

M̃
)v

vTAv
≤

δ

η ω(2− ω)
.

2
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